
AIAA-2001-1253

MESHLESS PETROV-GALERKIN__THOD APPLIED TO AXISYMMETRIC

PROBLEMS

I.S. Raju* and T. Chen t

NASA Langley Research Center, Hampton, VA 23681-0001, U.S.A.

Abstract

An axisymmetric Meshless Local Petrov-Galerkin
(MLPG) algorithm is presented for the potential and

elasticity problems. In this algorithm the trial and test
functions are chosen from different spaces. By a

judicious choice of these functions, the integrals
involved in the weak form can be restricted to a local

neighborhood. This makes the method truly meshless.
The MLPG algorithm is used to study various potential
and elasticity problems for which exact solutions are
available. The sensitivity and effectiveness of the

MLPG algorithm to various parameters such as the

weight functions, basis functions and support domain
radius, etc. was studied. The MLPG algorithm yielded
accurate solutions for all weight functions, basis

functions and support domain radii considered for all of

the problems studied.

Introduction

In the past decade, several meshless methods for the
solution of partial differential equations in science and

engineering appeared in the literature [1-4]. Meshless
methods retain all the advantages of the finite element
method without most of the disadvantages such as,

element locking and discontinuous derivatives of the

secondary variables across the element boundaries.
Atluri and Zhu [4] presented a new and innovative
meshless approach that uses Petrov-Galerkin weight
functions instead of the traditional Galerkin weighted
residual method. This meshless method is 'truly'
meshless. This method, referred to as the Meshless

Local Petrov-Galerkin (MLPG) method, does not need

"mesh" or "cells" either to interpolate the solution
variables or to evaluate the integrals that appear in the

weak form, but rather needs only nodes that are

randomly distributed in the domain.

In the present work, MLPG algorithm is formulated and

implemented for axisymmetric potential and elasticity
problems. Various choices of the basis functions, forms

of weight functions, and sizes of support domain are
considered. The approximate solutions obtained by the

MLPG algorithm are compared with the exact solutions
for evaluating their accuracies.

Axisymmetric Potential Problems

Consider a Poisson's equation for an axisymmetric

problem bounded by a toroidal domain with its cross

section defined by if2 as shown in Figure 1,

OZu 10u O2u
--+ ---+-- = g(r, z)
Or 2 r Or Oz 2

in ff2 (1)

with boundary conditions

u =u onFu and q=q on Fq (2)

where F =Fu + Fq and q = du/dn. In a steady-state

heat transfer problem, that is a typical Poisson's
problem, u is a temperature function, q is heat flux

through the boundary, and g is function of internal heat
generation.

The solution for Eq. (1) is sought in a weighted residual
manner as
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2n'f(V2u - g).v-r.d r.dz = 0 (3)
v_

where v is a weight function. The factor 2n in Eq. (3)
comes from integration over the tangential coordinate

0, because of axisymmetry.
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Axisymmetric Elasticity Problems

The stresses _,j and body force f for an elastic
continuum need to satisfy the equations of equilibrium
condition

crq,j + f_ = 0 (4)

where comma indicates the partial differentiation with

respect to the variable that follows the comma.

The boundary conditions on F bounding the domain f2
are

u (R) = _ _o_(R). _k (7)
k

where Ok is a fictitious value of u at node k and _ (R)

are the shape functions of node k. (Figure 2 illustrates a
least squares approximation to the _k values at each of

the randomly distributed nodes for a I-D case.) The

shape function, (,ok,can be written as

m

fok = _ pj (R). [A(R) -I B(R)Ijk (8)
j=l

with

u = _ on Fu and t = t on ['q (5)

where u and t are displacement and traction vectors,

respectively.

The weighted residual statements for Eq. (4) for the

axisymmetric case can be written as

or oz r

v,.r.dr.dz =O (6)

Oa, +-r_ + L)"
2z ( + 0z r

v:.r.dr.dz =O

N

A(R) = _ w k (R). pr (R k ).p(R k) (9)
k=l

B(R) = [w,(R). p(R,) .... wN (R)-p(RN) ] (10)

where N is the number of the nodes in the domain of

influence (see, for example, Ref. 4), wk (R) is a weight
function defined later, and pT(R) are the basis functions

and are chosen to be

pr(R)={l, r, z} (lla)

for linear representation (m = 3) and

pr(R)={l, r, z,r2,rz, z 2} (lib)

where o'r, era, _, and _: are stresses in cylindrical

coordinates (r, 0, z) and v_ and v_ are weight functions
for r and z directions, respectively. In this study, the

weight functions v_ and vz are chosen to be identical.

Since the MLPG algorithm for the potential and the

elasticity problems are very similar, the potential
problem is utilized to demonstrate the formulation in

the following two sections.

Moving Least Square Approximation

In the present meshless method, a trial function, u(R),
with moving least squares (MLS) scheme is used to

approximate (in cylindrical coordinates (r, z);

for quadratic representation (m = 6).

Note that in Eqs. (9) and (10), the matrices A (R) and B

(R) are of size m×m and re×N, respectively, and wk

(R) is the weight function associated with the node k.

The weight function wk (R) is chosen such that it is non-
zero over an influence sub-domain surrounding the
node k and zero outside of the influence domain [1-4].

In this study, the domain of influence of node k is
assumed to be a circle of radius lk. The radius l_ must be

large enough to contain at least m nodes in each
direction to prevent the numerical singularity of the A-

matrix in Eq. (9). The weight function is chosen such
that it is smooth and equals unity at the center of the
sub-domain, and equals zero at the boundary and

R=i.r+].z, the radius vector from the origin) the outside of the sub-domain. In this paper, three spline

distribution of the potential function u over a number of functions with C _, C 2 and C3 continuity are used as

randomly distributed nodes as shown in Fig. 1. The weight functions:

trial function, u(R), can be expressed in a series form as For CI:

[1-4]

wk(R)=II_3pk2+2pk 3 0_<pk <1 (12a)
t 0 Pk >1 ,
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for C2

= I1 _ lOpk 3+ 15Pk _ --6p_ 5 0 < Pk < 1
wk(R)

t 0 ,ok >1 ,

(12b)

for C 3 :

% (R) = 1 - 35pk 4 + 84pk 5- 70pk 6+ 20pk 7 0 < ,Ok< 10 Pk >1

(12c)

where Pk = dk / lk is the normalized distance and

=IIR-Rkl] is the distance between center of thedk
rr

support sub-domain Rk and the general point R. The
functions are shown in Figure 3a for a I-D domain. For

a 2-D domain, the weight function can be illustrated as
a 'smooth tent' as shown in Fig. 3b for a CI continuity

spline function.

MLPG Formulation

In the current implementation of MLPG formulation,

the weighted residual form of Eq. (3) is used. The
essential boundary conditions are included in the

weighted residual statement using a penalty method as

2_
!(VZu-g).v.r.dr.dz

-a. _ (,,-ft).v.r.dr}_..
=0

(13)

where _ is a penalty parameter which is chosen as a

large number (1 × 1016is used in this study.) Using the

divergence theorem, Eq. (13) can be recast (dropping

the constant 2rt) as

[ F_u _v + Ou OVl . r .dr . dz _ f g-J L-ff/r J
It

+ _rn,+--n_l.r • v.dFaz J
F

-a'.f(u-u).v.r.dF=O

F,

.v. r.dr.dz

(14)

where n, and n_ are the direction cosines of the normal
of the domain boundary along the r- and z-directions,

respectively.

Unlike the Galerkin method where the trial and test

functions are chosen from same space, the Petrov-
Galerkin method uses trial and test function from

different spaces. In the present work, the trial functions
are chosen as in Eq. (7), and the test functions are

chosen so that the evaluation of integrals involved in
Eq. (14) for the k th node is confined to a local

neighborhood Rk. This judicious choice of the test
function is what makes this method truly meshless. In

the present implementation, the test function, v(R, R k) ,

is defined in a similar manner as the weight functions in

Eq. (12) by replacing the lk with lo i.e.,

v(R,Rk)=wk(R)=f(pk) O<pk<l
(15)

=0 pk>l ,

where p, = R-R, II/I° is the normalized distance.

For an internal node, lo is selected to be equal or less
than the shortest distance between the node and the

domain boundary (for example, nodes p and q in Figure
4). For a node on the domain boundary, the sub-

domain is a segment of a circular region (for example,

node s in Figure 4).

Substitution of the chosen trial and test functions in the

weak form of Eq. (14) leads to

[K]. {ti} = {f} (16)

where

3_oj(R) Ov(R,R,) 0{oj(R) Ov(R,Rk) _
K,,=of ar + az )

+a. I #)(R).v(R,Rk). r.dF

rSU

-- nr+Tz
su

and

fk = _I -q(R ) "v(R'Rk )" r" d F

F sq

+G- f ft(R)- v(R,R k). r. d F

I

I1¢

l'su

- f g(R). v(R,R_)-r ,dr _ dz

It s

r. dr. dz

(17)

(18)

3
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where _(R)is the prescribed value of normal flux on

F . In Eqs. (17) and (18), the region f2, is the support
sq

domain of v(R,Rk)and is assumed to be a circle of

radius Io (see Figures 1 and 4). The F,, and F,q are
segments of the boundary formed by the intersection of

f2s and F (see Figure 4 nodes s and q). The region g2s
can be made as small as possible by a judicious choice
of the test function, v. Numerical integration is used to

evaluate the integrals involved in Eqs. (17) and (18). A

12-point Gaussian quadrature numerical integration is
used in the present study.

The axisymmetric elastic problem is formulated on
similar lines and hence this formulation is not presented
here.

Examples

To evaluate the current MLPG algorithm for potential

and elasticity problems, several patch test problems
with exact solutions are considered. The sensitivity of
the MLPG solution to the basis functions defined in Eq.

(11) and the three weight functions wk(R) selected in

Eq. (i2) is studied. Since all of the potential and
elasticity problems in this study are linear problems, the

patch test models are defined with an arbitrary constant
a. The various normalized radiuses of domain of

influence (lk/a) and normalized radiuses of support

domains (lo!a) are used to study their influence on the

accuracy of the results.

The results of the MLPG method are compared to exact

solutions. Two error norms (lleMIIl and IleMIl2)are used
to evaluate the effectiveness of various parameters.
These norms are defined as

1 M

IleMII, .....,¢
M _j=l

(19a)

| M
(19b)

where M is the total number of randomly distributed

internal points in the domain at which the numerical
solution is evaluated and compared to the exact

solution. Note that these internal points are independent

points and are not associated with the nodal points used
in the models. A value ofM = 50 is used in this study.

Potential Problems

Three potential patch tests involving Laplace-

(VZu = 0), and Poisson- (V2u = constant) equation

problems are considered.

Figure 5 shows two models of the Laplace and Poisson

equation problems used for the patch tests. These
examples are analyzed using the MLPG algorithm for

various prescribed boundary conditions for u and q on
the boundaries.

A triangular domain for two mixed boundary value

problems for Laplace equation is studied. The exact
2 '_

solution for this patch test problem is u -- r - 2z" + 3z.
The radius of the domain of influence Ik is set to equal

to 4a. Two different types of choices for Io are
considered. In the first choice, the distance from each

internal node to the closest boundary is computed.
These distances are used as the values of lo for that
node. Then the smallest value of all of the lo values is

used for all nodes on the boundaries. With this

definition, the support domain radius is different for
different nodes. The MLPG algorithm with different

values of I,, for each node recovered the exact solution

for the Laplace problems. In the second choice, the
smallest value of all the lo values from the first choice is

used for all the nodes. Once again, the exact solution
was recovered. In these studies, the effects of the
radius of the domain of influence, Ik, were also

evaluated by varying the radius from 4a to 10a. The
accuracy of results are insensitive to the radius of the
domain of influence.

The sensitivity of the MLPG solution is studied by
further varying the support domain radius lo. The

convergence of the error norm is presented in Figure 6.
All of the nodes in the model were set to have the same

value of Io. The results show that, for Laplace equation,

all three weight functions gave excellent solutions for
both the mixed boundary values problems and for a

variety of the normalized support domain radius, IJa.

The problem involving a Poisson's equation over an L-

shaped domain is considered next. The exact solution

for the patch test problem is u=r 2+2z 2+3z-2.

The convergence of the solution for various values of lo
and for different boundary conditions is presented in

Figure 7. Once again, the exact solution is recovered by
MLPG algorithm for all idealizations demonstrating
that the present MLPG algorithm is very efficient and
accurate.

Finally, a heat transfer problem involving radial heat
flow in a hollow circular cylinder with prescribed

4
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constanttemperaturesT_andT2at innerandouter
surfaces,respectively,isconsidered(seeFigure8).The
exact solution of the problem is

In(r/q) Themodelusedin the
T--_ -(T, -7"2)

In(r2/q)

MLPG algorithm for the problem with 25 randomly
distributed nodes and the boundary conditions used are

shown in Figure 8.

The exact solution for the temperature is a natural

logarithmic function and since the exact solution cannot
be represented by polynomial, a study of use of various
basis functions (polynomial function) is undertaken.

Three polynomial basis functions, linear, quadratic and
cubic are considered. Note that the higher order basis

function requires longer computer times. Figure 9

presents the error norm for various basis functions with
a C I weight function. The support domain radius, Io, is

set equal to 0.35a for the nodes on the boundary and
equal to the distance to the closest boundary for the
internal nodes. Very accurate solutions are obtained for
all cases studied. Figure 9 shows that the higher order

basis function yielded more accurate results than the
lower order basis function.

Elasticity Problems

Several elasticity problems were studied to evaluate the

MLPG algorithm. The elastic material properties,

Young's modulus E = 100 GPa and Poisson's ratio
=0.3, were used in these problems. As in the case of

the potential problems, the accuracy of the results are
insensitive to the radius of the domain of influence, Ik,

if the value of I_ greater than 4a.

First the axisymmetric elastic MLPG method was
evaluated on problems involving axial tension and

radial compression of a circular cylinder with different
boundary conditions. Since exact solutions for these
simple patch test problems can be represented by the

polynomial functions, the meshless method, as

expected, recovered the solutions to machine accuracy
for all weight and basis functions all of the models.

L_me's Cylinder

A hollow cylinder subjected to constant internal (P0
and external (P2) pressures (L_tme's Problem) is
considered (see Figure 10). For the problem analyzed,

internal pressure Pl, external pressure P2, the inner
radius rt = a and the outer radius r2 = 2a were used. The

models used for the problem are shown in Figure 10.
The exact solution of the problem is

cr =C,-C21r 2 ;or e =Cl +C_lr _ ;o" z =2.v.C,

u,='--_"-" Ct'(1-2"o)'r+ ; uo=uz

where

C! - Pl" rl 2 - P2" r22 ; C_ = Pl -P_..__._2. rl2 "r22
- 4 - 4

--0;

(20)

Figure 11 shows the variation of the error norm for the

three different weight functions with the normalized
domain size using quadratic basis function. All of the
nodes in the model were assumed to have the same

support domain radius, lo. The error norm reduces
substantially as the domain size increases for all the
three weight functions considered. Figure 11 also
shows that the error norm of CI-weight functions is
lower than those with C2-and Ca- weight functions. One

of the reasons why CLweight function produces less

error than the CLweight function is possibly due to the
fact that C _function has a larger "effective radius" than
the C 3 function. The effective radius is defined to be a

value of _ in Eq. (12) as the value of the corresponding
weight function wk(R) is too small to operative in the
integrals in Eq. (17). For an arbitrary small threshold

value of the weight function, w_(R) = 0.01, the effective
radius of C 1 function is 0.94 while the C 3 function is

about 0.86 (see Figure 3(a)). This suggests that for
Lame's problem the effective radius appears to be

influencing the accuracy of the results.

An additional study of the domain size effect is

conducted using a model with 25 randomly distributed
nodes (Figure 12). Two different types of choices for lo

are considered namely equal and unequal size domain.
In the first choice "equal size domain", the lo is kept the
same for all of the nodes and equals to the smallest
distance from an internal node to the closest boundary

(see Figure 12). In the second choice, "unequal size
domain" is used. In this choice, for each internal node

the lo is kept as large as possible and set to be the
distance of the node to the closest boundary. For each

boundary node, the lo is kept to the distance from that
node to its adjacent boundary nodes (see Figure 12).

The results in Figure 11 suggest that a more accurate
solution (smaller error norm) is obtained when a larger

domain size is used. Thus, the unequal size domain is

expected to yield a more accurate solution. This
expectation is confirmed in Figure 12 with the
randomly distributed node model.

The effects of the basis function are also evaluated,

since the exact solution for the displacement in L,_me's

problem can not be represented precisely by any of the
three - linear, quadratic and cubic - polynomial basis
functions used. The error norm obtained with each of

the choices of the basis functions is presented in Figure
13. The cubic basis function yielded the most accurate
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results while the linear basis function produced a

marginally better result than the quadratic function.

Rotating Disk

The next problem studied is that of a disk with uniform

thickness rotating with a speed of co rad/sec, as shown

in Figure 14. In this problem, all the boundaries are
stress free while the disk is subjected to an inertial force

per unit volume that equals to p. coz • r, where p is the

density of the disk material and co is the angular

velocity. The exact solution of the problem when the
Poisson's ratio is equal to zero is given by [see pages
335-337, Ref. 5]

3 rlz. r2z
crr = _" PCO2(ri 2 + rz2 rz rZ)

3 rlz -rzz I r2)
cr° = -8 "pc°2 ( fiz + rzz -_ r z 3

o"z =0; uz =0

Ur = 3. 100)2 r" 52 + r2z _ rt r"r_ 31r3

where again E is Young's modulus of the material.

(21)

Three models are used to study the convergence of the

solution to nodal refinement (Figure 14). In the model-
I, seven nodal points are placed in the r direction. In

the model-2, the distance between adjacent nodes is
half of the distance between adjacent nodes in model-I

(d=A/2.) In the model-3, the distance between adjacent

nodes is a quarter of the distance in model-1 (d=A/4).
The number of nodes in z direction is kept the same for
all of three models.

Figure 15 shows the effect of the nodal arrangement
with constant domain size (equals to the distance

between the nodes of model-3, i.e. lo = A/4). The

model-3 has most nodal points and produced, as
expected, the most accurate solution. However, the
model-3 requires about 4 times the CPU time of model- [1]

1. The effect of the basis functions is shown in Figure
16 using model-2 with C l weight function. The cubic

basis function yielded a more accurate result than both
of the linear and the quadratic basis functions.
However, the error norm of the linear basis function

accuracy is about 0.1%. [2]

Figure 17 shows the effect of the domain size using
model-2 and a cubic basis function. The results, once

again, show that the large support domain radius yields
a small error norm.

Concluding Remarks

A meshless Local Petrov-Galerkin (MLPG) algorithm

is presented for analyzing potential and elasticity
problems in axisymmetric domains. In this method, the
trial and test functions are chosen from different spaces.

By a judicious choice of these functions, the integrals
involved in the weak form can be restricted to a local

neighborhood. This makes the method truly meshless.

The MLPG algorithm is implemented and its efficiency
is studied with respect to three basis functions, three

different weight functions, and different sizes of local

support domain.

Potential patch test problems involving Laplace and
Poisson equations are used to evaluate the efficiencies

of the algorithm. To evaluate the effectiveness of the
MLPG algorithm for elasticity problems, several simple

patch test problems, a L?lme's cylinder problem and
rotating disk problem, are studied.

The C I weight function yielded more accurate results
than C 2 and C 3 functions for the patch test problems

studied. Since the C _function requires lesser computing
time than C 2 and C 3 functions, it should be used in most

problems. The larger value of the support domain
radius, lo, tended to decrease the error norm. The
variation of the radius of the domain of influence, Ik,

does not show a significant effect on the accuracy of the
result. For most problems studied, the cubic basis

function yielded most accurate results. Increasing the
order of the basis function substantially increases the

computing time, but reduces the error norm.

In summary, the current MLPG algorithm yielded

accurate solutions for all the potential and elasticity
patch tests and other problems studied. A simple C 1

weight function, with a large support domain radius and
a simple linear basis function are recommended for
accurate results.

[3]
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Figure 16 Rotating disk - Effect of basis

functions - (C 1 weight function; Io/a = 0.25;

model-2)

Figure 17 Rotating disk - Effect of support

domain radius - (C _ weight function;

Cubic basis function, model-2)
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